Hurricane Dynamics

The figure above shows spiral gravity waves radiating outward from a simulated hurricane.
See Nolan and Zhang (2017), below.

Over the years our research group has published numerous papers on many aspects of hurricane dynamics, most notably including hurricane formation, early development, rapid intensification, spiral bands, secondary eyewall formation, and inner-core asymmetries, and radiation of spiral gravity waves.

Some recent publications:

Nolan, D. S., and M. J. Onderlinde, 2022: The representation of spiral gravity waves in a mesoscale model with increasing horizontal and vertical resolution. Journal of Advances in Modeling Earth Systems, 14, e2022MS002989. https://doi.org/10.1029/2022MS002989.

Evans, R. C., and D. S. Nolan, 2022: The spatiotemporal evolution of the diurnal cycle in two WRF simulations of tropical cyclones. J. Atmos. Sci., 79, 1021-1043. https://doi.org/10.1175/JAS-D-21-0100.1.

Wadler, J. B., D. S. Nolan, J. A. Zhang, and L. K. Shay, 2021: Thermodynamic characteristics of downdrafts as seen in idealized simulations of different intensities. J. Atmos. Sci., 78, 3503-3524. https://doi.org/10.1175/JAS-D-21-0006.1.

Wu, S.-N., B. J. Soden, and D. S. Nolan, 2021: Examining the role of cloud radiative interactions in tropical cyclone development using satellite measurements and WRF simulations. Geophys. Res. Lett., 48, e2021GL093259.

Dai, Y., S. J. Majumdar, and D. S. Nolan, 2021: Tropical cyclone resistance to strong environmental shear. J. Atmos. Sci., 78, 1275-1293.

Wu, S.-N., B. J. Soden, Y. Miyamoto, D. S. Nolan, and S. A. Buehler, 2021: Using satellite observations to evaluate the relationships between ice condensate, latent heat release, and tropical cyclone intensification in a mesoscale model. Mon. Wea. Rev., 149, 113-129.

Nolan, D. S., 2020: An investigation of spiral gravity waves radiating from tropical cyclones using a linear, nonhydrostatic model. J. Atmos. Sci., 77, 1733-1759.

Zhang, J. A., J. P. Dunion, and D. S. Nolan, 2020: In situ observations of the diurnal variation in the boundary layer of mature hurricanes. Geophys. Res. Lett., 47, 2019GL086206.

Nolan, D. S., Y. Miyamoto, S.-N. Wu, and B. J. Soden, 2019: On the correlation between total condensate and moist heating in tropical cyclones and applications for diagnosing intensity. Mon. Wea. Rev., 147, 3759-3784.

Evans,R. C., and D. S. Nolan, 2019: Balanced and radiating wave responses to diurnal heating in tropical cyclone-like vortices using a linear nonhydrostatic model. J. Atmos. Sci., 76, 2575-2597.

Dai, Y., S. J. Majumdar, and D. S. Nolan, 2019: The outflow-rainband relationship induced by environmental flow around tropical cyclones. J. Atmos. Sci., 76, 1845-1863.

Klotz, B. W., and D. S. Nolan, 2019: SFMR surface wind undersampling over the tropical cyclone lifecycle. Mon. Wea. Rev., 147, 247-268.

Dunion, J. P., C. D. Thorncroft, and D. S. Nolan, 2019: Tropical cyclone diurnal signals in a hurricane nature run. Mon. Wea. Rev., 147, 363-388.

Miyamoto, Y., D. S. Nolan, and N. Sugimoto, 2018: A dynamical mechanism for secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 75, 3965-3986.

Miyamoto, Yoshiaki, and David S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555-569.

Nolan, David S., and Jun A. Zhang, 2017: Spiral gravity waves radiating from tropical cyclones. Geophys. Res. Lett.,44, 3924-3931, doi:10.1002/2017/GL073572.

Onderlinde, Matthew J., and David S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, doi:10.1002/2016MS000796.

Dai, Yi, Sharanya J. Majumdar, and David S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow-jet interaction. J. Atmos. Sci., 74, 1941-1958.